34 research outputs found

    Two-stage motion artefact reduction algorithm for electrocardiogram using weighted adaptive noise cancelling and recursive Hampel filter

    Get PDF
    The presence of motion artefacts in ECG signals can cause misleading interpretation of cardiovascular status. Recently, reducing the motion artefact from ECG signal has gained the interest of many researchers. Due to the overlapping nature of the motion artefact with the ECG signal, it is difficult to reduce motion artefact without distorting the original ECG signal. However, the application of an adaptive noise canceler has shown that it is effective in reducing motion artefacts if the appropriate noise reference that is correlated with the noise in the ECG signal is available. Unfortunately, the noise reference is not always correlated with motion artefact. Consequently, filtering with such a noise reference may lead to contaminating the ECG signal. In this paper, a two-stage filtering motion artefact reduction algorithm is proposed. In the algorithm, two methods are proposed, each of which works in one stage. The weighted adaptive noise filtering method (WAF) is proposed for the first stage. The acceleration derivative is used as motion artefact reference and the Pearson correlation coefficient between acceleration and ECG signal is used as a weighting factor. In the second stage, a recursive Hampel filter-based estimation method (RHFBE) is proposed for estimating the ECG signal segments, based on the spatial correlation of the ECG segment component that is obtained from successive ECG signals. Real-World dataset is used to evaluate the effectiveness of the proposed methods compared to the conventional adaptive filter. The results show a promising enhancement in terms of reducing motion artefacts from the ECG signals recorded by a cost-effective single lead ECG sensor during several activities of different subjects

    Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning

    Get PDF
    Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting malicious websites is essential to prevent the spreading of malware and protect end-users from being victims. However, most existing solutions rely on extracting features from the website’s content which can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the detection of malicious URLs is still not well addressed due to insufficient features and inaccurate classification. This study aims at improving the detection accuracy of malicious URL detection by designing and developing a cyber threat intelligence-based malicious URL detection model using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from web searches to improve detection accuracy. Cybersecurity analysts and users reports around the globe can provide important information regarding malicious websites. Therefore, cyber threat intelligence-based (CTI) features extracted from Google searches and Whois websites are used to improve detection performance. The study also proposed a two-stage ensemble learning model that combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP) for final decision making. The trained MLP classifier has replaced the majority voting scheme of the three trained random forest classifiers for decision making. The probabilistic output of the weak classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate classification. Results show that the extracted CTI-based features with the two-stage classification outperform other studies’ detection models. The proposed CTI-based detection model achieved a 7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional URL-based model

    Multi-modal Features Representation-based Convolutional Neural Network Model for Malicious Website Detection

    Get PDF
    Web applications have proliferated across various business sectors, serving as essential tools for billions of users in their daily lives activities. However, many of these applications are malicious which is a major threat to Internet users as they can steal sensitive information, install malware, and propagate spam. Detecting malicious websites by analyzing web content is ineffective due to the complexity of extraction of the representative features, the huge data volume, the evolving nature of the malicious patterns, the stealthy nature of the attacks, and the limitations of traditional classifiers. Uniform Resource Locators (URL) features are static and can often provide immediate insights about the website without the need to load its content. However, existing solutions for detecting malicious web applications through web content analysis often struggle due to complex feature extraction, massive data volumes, evolving attack patterns, and limitations of traditional classifiers. Leveraging solely lexical URL features proves insufficient, potentially leading to inaccurate classifications. This study proposes a multimodal representation approach that fuses textual and image-based features to enhance the performance of the malicious website detection. Textual features facilitate the deep learning model’s ability to understand and represent detailed semantic information related to attack patterns, while image features are effective in recognizing more general malicious patterns. In doing so, patterns that are hidden in textual format may be recognizable in image format. Two Convolutional Neural Network (CNN) models were constructed to extract the hidden features from both textual and image-represented features. The output layers of both models were combined and used as input for an artificial neural network classifier for decision-making. Results show the effectiveness of the proposed model when compared to other models. The overall performance in terms of Matthews..

    Ransomware detection using the dynamic analysis and machine learning: A survey and research directions

    Get PDF
    Ransomware is an ill-famed malware that has received recognition because of its lethal and irrevocable effects on its victims. The irreparable loss caused due to ransomware requires the timely detection of these attacks. Several studies including surveys and reviews are conducted on the evolution, taxonomy, trends, threats, and countermeasures of ransomware. Some of these studies were specifically dedicated to IoT and android platforms. However, there is not a single study in the available literature that addresses the significance of dynamic analysis for the ransomware detection studies for all the targeted platforms. This study also provides the information about the datasets collection from its sources, which were utilized in the ransomware detection studies of the diverse platforms. This study is also distinct in terms of providing a survey about the ransomware detection studies utilizing machine learning, deep learning, and blend of both techniques while capitalizing on the advantages of dynamic analysis for the ransomware detection. The presented work considers the ransomware detection studies conducted from 2019 to 2021. This study provides an ample list of future directions which will pave the way for future research

    Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine

    Get PDF
    Data streaming applications such as the Internet of Things (IoT) require processing or predicting from sequential data from various sensors. However, most of the data are unlabeled, making applying fully supervised learning algorithms impossible. The online manifold regularization approach allows sequential learning from partially labeled data, which is useful for sequential learning in environments with scarcely labeled data. Unfortunately, the manifold regularization technique does not work out of the box as it requires determining the radial basis function (RBF) kernel width parameter. The RBF kernel width parameter directly impacts the performance as it is used to inform the model to which class each piece of data most likely belongs. The width parameter is often determined off-line via hyperparameter search, where a vast amount of labeled data is required. Therefore, it limits its utility in applications where it is difficult to collect a great deal of labeled data, such as data stream mining. To address this issue, we proposed eliminating the RBF kernel from the manifold regularization technique altogether by combining the manifold regularization technique with a prototype learning method, which uses a finite set of prototypes to approximate the entire data set. Compared to other manifold regularization approaches, this approach instead queries the prototype-based learner to find the most similar samples for each sample instead of relying on the RBF kernel. Thus, it no longer necessitates the RBF kernel, which improves its practicality. The proposed approach can learn faster and achieve a higher classification performance than other manifold regularization techniques based on experiments on benchmark data sets. Results showed that the proposed approach can perform well even without using the RBF kernel, which improves the practicality of manifold regularization techniques for semi-supervised learning

    A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network

    Get PDF
    A vehicular ad hoc network (VANET) is an emerging technology that improves road safety, traffic efficiency, and passenger comfort. VANETs’ applications rely on co-operativeness among vehicles by periodically sharing their context information, such as position speed and acceleration, among others, at a high rate due to high vehicles mobility. However, rogue nodes, which exploit the co-operativeness feature and share false messages, can disrupt the fundamental operations of any potential application and cause the loss of people’s lives and properties. Unfortunately, most of the current solutions cannot effectively detect rogue nodes due to the continuous context change and the inconsideration of dynamic data uncertainty during the identification. Although there are few context-aware solutions proposed for VANET, most of these solutions are data-centric. A vehicle is considered malicious if it shares false or inaccurate messages. Such a rule is fuzzy and not consistently accurate due to the dynamic uncertainty of the vehicular context, which leads to a poor detection rate. To this end, this study proposed a fuzzy-based context-aware detection model to improve the overall detection performance. A fuzzy inference system is constructed to evaluate the vehicles based on their generated information. The output of the proposed fuzzy inference system is used to build a dynamic context reference based on the proposed fuzzy inference system. Vehicles are classified into either honest or rogue nodes based on the deviation of their evaluation scores calculated using the proposed fuzzy inference system from the context reference. Extensive experiments were carried out to evaluate the proposed model. Results show that the proposed model outperforms the state-of-the-art models. It achieves a 7.88% improvement in the overall performance, while a 16.46% improvement is attained for detection rate compared to the state-of-the-art model. The proposed model can be used to evict the rogue nodes, and thus improve the safety and traffic efficiency of crewed or uncrewed vehicles designed for different environments, land, naval, or air

    Multi-Method Diagnosis of CT Images for Rapid Detection of Intracranial Hemorrhages Based on Deep and Hybrid Learning

    Get PDF
    Intracranial hemorrhaging is considered a type of disease that affects the brain and is very dangerous, with high-mortality cases if there is no rapid diagnosis and prompt treatment. CT images are one of the most important methods of diagnosing intracranial hemorrhages. CT images contain huge amounts of information, requiring a lot of experience and taking a long time for proper analysis and diagnosis. Thus, artificial intelligence techniques provide an automatic mechanism for evaluating CT images to make a diagnosis with high accuracy and help radiologists make their diagnostic decisions. In this study, CT images for rapid detection of intracranial hemorrhages are diagnosed by three proposed systems with various methodologies and materials, where each system contains more than one network. The first system is proposed by three pretrained deep learning models, which are GoogLeNet, ResNet-50 and AlexNet. The second proposed system using a hybrid technology consists of two parts: the first part is the GoogLeNet, ResNet-50 and AlexNet models for extracting feature maps, while the second part is the SVM algorithm for classifying feature maps. The third proposed system uses artificial neural networks (ANNs) based on the features of the GoogLeNet, ResNet-50 and AlexNet models, whose dimensions are reduced by a principal component analysis (PCA) algorithm, and then the low-dimensional features are combined with the features of the GLCM and LBP algorithms. All the proposed systems achieved promising results in the diagnosis of CT images for the rapid detection of intracranial hemorrhages. The ANN network based on fusion of the deep feature of AlexNet with the features of GLCM and LBP reached an accuracy of 99.3%, precision of 99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84

    Malware detection issues, challenges, and future directions: A survey

    Get PDF
    The evolution of recent malicious software with the rising use of digital services has increased the probability of corrupting data, stealing information, or other cybercrimes by malware attacks. Therefore, malicious software must be detected before it impacts a large number of computers. Recently, many malware detection solutions have been proposed by researchers. However, many challenges limit these solutions to effectively detecting several types of malware, especially zero-day attacks due to obfuscation and evasion techniques, as well as the diversity of malicious behavior caused by the rapid rate of new malware and malware variants being produced every day. Several review papers have explored the issues and challenges of malware detection from various viewpoints. However, there is a lack of a deep review article that associates each analysis and detection approach with the data type. Such an association is imperative for the research community as it helps to determine the suitable mitigation approach. In addition, the current survey articles stopped at a generic detection approach taxonomy. Moreover, some review papers presented the feature extraction methods as static, dynamic, and hybrid based on the utilized analysis approach and neglected the feature representation methods taxonomy, which is considered essential in developing the malware detection model. This survey bridges the gap by providing a comprehensive state-of-the-art review of malware detection model research. This survey introduces a feature representation taxonomy in addition to the deeper taxonomy of malware analysis and detection approaches and links each approach with the most commonly used data types. The feature extraction method is introduced according to the techniques used instead of the analysis approach. The survey ends with a discussion of the challenges and future research directions
    corecore